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Abstract. Non-universal dynamics is shown to occur in a one-dimensional non-equilibrium
system of hard-core particles. The stochastic processes included are pair creation and annihilation
(with ratesε and ε′) and symmetric hopping rates which alternate from one bond to the next
(pA, pB ). A dynamical scaling relation between the relaxation time and the correlation length
in the steady state is derived in a simple way for the caseε′ > pA � pB � ε. We find that
the dynamical exponent takes the non-universal valuez = 2 ln(ε′/ε)/ ln(pBε′/pAε).

For the special conditionε + ε′ = pA + pB , where the stochastic system is in principle
soluble by reduction to a free fermion system, the model is mapped to the Glauber dynamics
of an Ising chain with alternating ferromagnetic bonds of valuesJ1 and J2, in contact with a
quantum thermal bath. The full time dependence of the space-dependent magnetization and of
the equal time spin–spin correlation function are studied by writing the master equation for this
system in the quantum Hamiltonian formalism. In particular, we obtain the dispersion relations
and rigorously confirm the results obtained for the correlation length and for the dynamical
exponent.

1. Introduction

This paper discusses non-universal critical dynamics of non-equilibrium particle systems,
in which dynamic exponents depend on microscopic parameters (ratios of transition rates).

Non-equilibrium particle systems with stochastic dynamics show properties ranging
from steady-state phase transitions to turbulence, shocks, and non-equilibrium analogues of
strong fluctuations and critical behaviour [1, 2]. As with equilibrium critical phenomena,
associated critical exponents are typically dependent on symmetries and dimensionalities and
(for dynamics) conservation laws, but not on microscopic details. In particular, the dynamic
exponentz in many simple systems describes diffusive relaxation towards equilibrium
(z = 2), while in others it takes other parameter independent values, for examplez = 3/2
in the one-dimensional noisy KPZ or Burgers equations [3–6].

Simple hard-core particle models of non-equilibrium stochastic dynamics can be mapped
to quantum systems and, in particular, to spin models. This latter mapping is achieved either
by a pseudo-spin representation of the particles or by associating particles with domain walls
[7–11].
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However, it is well known that non-universal behaviour can exist in certain non-uniform
spin systems with Glauber dynamics [12], such as that providing a simple model for freezing
into non-equilibrium states and glassy dynamics [13–16]. Here the relationshipτ ∼ ξz

between the relaxation timeτ and the equilibrium correlation length involves a parameter-
dependent dynamic exponentz [17–19]. This suggests that analogous non-universal
behaviour can exist in non-uniform stochastic particle systems, and this is demonstrated
here.

The model considered is defined on a one-dimensional lattice withL sites. We divide
this into two sub-lattices,A andB, containing even and odd sites, respectively. Each site
can be occupied by at most one particle. A pair of particles in adjacent sites can annihilate
with rateε′. A pair can be created on two empty adjacent sites with rateε. A particle can
hop to an empty nearest-neighbour site with ratepA if it is in sublatticeA and with rate
pB if it is in sublatticeB.

The correlation lengths characterizing the steady-state particle separations on each
sublattice can be obtained by dynamic balance conditions within a mean-field approximation.
The characteristic time for diffusion across the smaller of the lengths,ξ , can then be
estimated from the hopping process. This is particularly simple to do when, for example,
the annihilation rate is much greater than the creation rate (whenξ is large) and one hopping
rate is much greater than the other. This simple procedure already provides the non-universal
behaviour of the dynamic exponentz.

For a special case where the rates satisfy one constraint, the quantum spin Hamiltonian
representing the particle dynamics reduces to a free fermion form after a Jordan–Wigner
transformation [20]. The alternative and simpler way used here of achieving an exact
solution for this case is by mapping the stochastic particle system to the Glauber dynamics
of an Ising model with alternating bondsJ1, J2 [10, 21].

The correlation lengths and relaxation time readily provided by the simple argument in
the particle picture thus translate, for the special rate relation, into results for the alternating
bond Ising model, where they can be confirmed by exact calculation on the spin model.

The Glauber dynamics of this model is that resulting from coupling the static Ising
system to a quantum thermal bath and considering the Van Hove limit of a weak interaction
and very large times. By writing the master equation which describes the Glauber dynamics
in a quantum Hamiltonian formalism, we can easily obtain the equation determining the
time evolution of the equal-time spin–spin correlation function. From this quantity one can
compute the equilibrium domain wall density in the Glauber problem which is equivalent to
the steady-state density of particles in the stochastic particle dynamics [10, 21]. By taking
the Fourier transform of this equation we obtain a system of four linear equations which
determine the dependence of the eigenfrequencies with the wavevectors of the two spin
excitations. The solution of the associated secular equation gives us the dispersion relation.
The behaviour of the frequency at low wavevectors determines the critical exponentz. We
fully confirm the results obtained previously.

The structure of this paper is as follows: in section 2, we define the dynamics of the
particle system in terms of the constituent stochastic processes (diffusion, annihilation and
creation). Using the simple mean-field and random-walk arguments referred to above, we
obtain the relation between the relaxation time and the equilibrium correlation length and
hence we determine the critical exponentz. In section 3 we present the Glauber dynamics
of the alternating-bond Ising system, giving the rates of transition between the different
configurations. We then go on to relate the spin-flip processes to domain wall hopping,
creation and annihilation, which translate to the particle processes. In section 4, we write
down the master equation in a quantum Hamiltonian formalism and derive the equation
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giving the time evolution of the spin–spin correlation function. Hence, we obtain the
dispersion relation and from it we can again computez. Finally, in section 5 we present
our conclusions.

2. The reaction–diffusion system and its non-universal dynamics

The hard-core particle dynamics is as specified in the introduction: a particle on the even
sublattice may hop to its left nearest-neighbour site, provided it is empty, or to its right
nearest neighbour (if empty) at ratepA; the corresponding rate for hopping from the odd
sublattice ispB ; in addition, pairs of particles can appear at (or annihilate from) adjacent
empty (or full) sites at a rateε (or ε′). These processes are depicted in table 1 (see later).

We now consider the description of the steady state. Here the particle densitiesρA and
ρB on the two sublattices will be uniform. Since the system is in equilibrium the processes of
creation and annihilation have to balance each other. Therefore, one concludes that, provided
the mean-field approximation applies,ε′ ρAρB = ε (1−ρA)(1−ρB). The same must be true
for the processes of diffusion. HencepAρA(1− ρB) = pB(1− ρA)ρB . One obtains from
these relationsρA ∼ xA/(1+xA), wherexA = (εpB/ε′pA)1/2 andρB ∼ xB/(1+xB), where
xB = (εpA/ε′pB)1/2. These densities allow us to extract two distinct separation lengths, the
average distancesρ−1

α between particles on each sublatticeα.
We will be particularly interested in the critical situation where these two characteristic

lengths are both large. That occurs whenε′ � ε, giving large particle separations, or where
ε � ε′ (large vacancies separations). For convenience we consider only the former case.
It is also convenient to takepA � pB , to widely separate the two lengths. Both are still
large providedε′/ε � pA/pB . The shorter, controlling correlation lengthξ is then

ξ ∼ ρ−1
B ∼ x−1

B = (ε′pB/εpA)1/2. (1)

Now to determine the rate of approach to this steady state forε′ � ε one uses a
modification, appropriate to the particle dynamics, of an argument given by [22]. For
large times the evolution of the system is determined by the limiting relaxational process,
namely particles diffusing until they meet, when they annihilate. For situations close to
the steady state, i.e. for long-time critical dynamics (starting from generic non-equilibrium
initial states), the characteristic time involved is that for particles to diffuse across the shorter
steady-state separation length,ξ , and to annihilate. Now to traverse two adjacent bonds
both ratespA andpB enter and the effective diffusion rate is 4pApB/(pA + pB). Thus the
characteristic time isτ ∼ (ε′pB/εpA)(pA + pB)/4pApB ∝ ξz giving

z = 2 ln

(
ε′

ε

)/
ln

(
ε′pB
εpA

)
(2)

in the regime of validity (ε′/ε � pA/pB � 1). This is a non-universal result, being
dependent on ratios of rates. The above reasoning is based on the mean-field argument
that we have used to determineρA and ρB . Mean-field theory determines correctly the
characteristics of the steady state, but it fails to predict the correct approach to the steady
state [11]. This is due to the diffusion aspects of the problem, which are relevant in one
dimension. The random-walk argument that we have given to determineτ incorporates
these aspects. We will see in the next sections that the same results are obtained by an
exact calculation based on an equivalent Glauber–Ising dynamics. That equivalence applies
when the rates satisfy

ε + ε′ = pA + pB. (3)
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This relation is also sufficient to reduce the quantum Hamiltonian representing the particle
dynamics to a free fermion form, which gives another possible method for solving the
particle dynamics exactly.

Finally, we note that the exponentz changes continuously with the value of the rates
of the diffusion and reaction processes, as given by equation (2). A similar example of a
critical exponent which changes continuously was found in the study of the dynamics of the
q-state Potts model [23]. In this system, the fraction of spins which never flip up to timet ,
r(q, t), decays like a power lawr(q, t) ∼ t−θ(q) when the initial condition is random. The
exponentθ(q) varies continuously withq.

3. An Ising system with generalized Glauber dynamics, and its relationship to
reaction-diffusion processes

The Ising system considered is a spin-1
2 chain, where a spin on the even sublattice is coupled

to its left nearest neighbour by a ferromagnetic Ising interaction of strengthJ1 and coupled
to its right nearest neighbour by an interaction of strengthJ2 (J1 > J2) [17]. One can
therefore write the Hamiltonian for this alternating-bond system in the form

H = −
L∑
l=1

Jlσlσl+1 (4)

whereσl denotes the eigenvalues ofσ̂ zl , Jl = J1 for l odd andJl = J2 for l even. The
transitions between different configurations of the system, i.e. between different sets of
values of the spins, are of the Glauber type, i.e. the system evolves by single spin flips [12].
The probability per unit time that a spin will flip from its value to the opposite one is taken
to be [17]

ω(σl) = 1
20[1− 1

2σl(γ
+
l σl−1+ γ−l σl+1)] (5)

with

γ±l = tanh(Kl−1+Kl)± tanh(Kl−1−Kl) (6)

whereKl = Jl/kBT. Notice that if we takeJ1 = J2 we will recover the usual Glauber
rates. It can be easily verified that these rates satisfy detailed balance which is a sufficient
condition for the steady-state distribution of the Ising system to be a Gibbs distribution. This
dynamics can be derived [24] by coupling the Ising system, described by Hamiltonian (4) to
an ensemble of free fermion baths with a grand canonical probability distribution, i.e. with
a density matrix given (in the case of no interaction) byρ̂ = exp[−β(Ĥ − µN̂)]/Z where
Ĥ and N̂ are the Hamiltonian and the particle number operator of the free fermion bath,
respectively,β is the inverse temperature andµ the chemical potential. The quantityZ is
the grand partition function and is just a normalization factor. If the particle number of the
fermion system is kept fixed, then the chemical potential is, for low enough temperatures,
essentially equal to the Fermi energy of the system. The coupling is done via an interaction
operator which couples thêσx component of each spin to a thermal bath whose probability
distribution is the one given above. The different copies of the thermal bath are totally
uncorrelated. If one takes the joint limit of the interaction strengthλ going to zero and
t → ∞ such thattλ2 is a constant (limit of Van Hove) [25, 26] one obtains the transition
rates given by (5), under the condition that the chemical potential (Fermi energy) of the
fermion bath is much larger than the couplingsJ1 andJ2. If that is not the case then the
transition rates still have the form (5), but the parameter0 is no longer a constant and
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Table 1. Processes of transition for a spin in the even sublattice and the equivalent particle
processes. The spin which is to flip is the central one. The coupling strength of the left bond is
J1, and of right bondJ2. An empty circle in the dual lattice is to be identified with a vacancy
and a full circle with the presence of a particle. For a spin in the odd sublattice the rates of the
last two processes should be interchanged.

Initial state Final state Transition rate

↑ ◦ ↑ ◦ ↑ ↑ • ↓ • ↑ 1
20[1− tanh(K1 +K2)] = ε

↑ • ↓ • ↑ ↑ ◦ ↑ ◦ ↑ 1
20[1+ tanh(K1 +K2)] = ε′

↑ ◦ ↑ • ↓ ↑ • ↓ ◦ ↓ 1
20[1+ tanh(K1 −K2)] = pA

↑ • ↓ ◦ ↓ ↑ ◦ ↑ • ↓ 1
20[1− tanh(K1 −K2)] = pB

depends on the value of the neighbouring spins. We will consider that we can take0 as a
constant.

It is well known that there is a duality relation between Glauber dynamics and the
reaction-diffusion model of hard-core particles discussed above [10, 21]. To see this we
take a given configuration of the Ising system and consider the lattice of sites located in the
middle of the bonds between the Ising spins (dual lattice). If the neighbouring Ising spins
have different signs then we place a particle at that site of the dual lattice. Otherwise we
leave the site empty. In this way, we map domain walls in the Ising system to particles
in the dual lattice. It can be shown that this mapping has a precise mathematical meaning
[27]. The different possible processes of transition for a given spin, its translation in terms
of particle processes, the rates associated and their relation are given in table 1. Notice
that the sum of the rates of the first two processes is equal to the sum of the last two
in agreement with (3). This shows that this system is in the class of systems that are
integrable (the precise meaning of this word will be made clear later) through free fermions
[7]. This allows the computation of correlation functions for a set of distributions of initial
configurations [11, 27]. Here we will not pursue this point. If we now take the limit of low
temperatures (K1� K2� 1) we see that the rates of pair annihilation (ε′) and of diffusion
from the strong bond to the weak bondpA are equal to0. On the other hand, the rate of
diffusion from a weak bond to a strong bond ispB ∼ 0 exp(−2(K1 − K2)). Finally, the
rate of pair creation isε ∼ 0 exp(−2(K1 + K2)). So we see that these two last processes
are exponentially suppressed at low temperatures. Nevertheless, they have to be taken into
account for a proper description of the steady state and diffusive dynamics, as we saw in
section 2. We will see in the next section that the results given in section 2 may be obtained
by an exact calculation.

4. The master equation in the quantum Hamiltonian formalism

In this section we will study the time evolution of the spin–spin correlation function. For
that we need the full master equation for the evolution of the Ising system with rates given
by (5). Since the master equation is a linear equation, a particularly convenient way to
write it is to use an operator formalism which assigns to each configuration of Ising spins
a vector|n〉 in a Hilbert space. The probability distribution for the different configurations
at a given timet can then be written as a state vector|9t 〉 =

∑
n P (n, t)|n〉 [28], where

P(n, t) is the probability of finding configurationn at timet and is a solution of the master
equation. The set of different|n〉 is supposed to be orthonormal and complete. One can
then write the master equation in the compact form∂t |9t 〉 = −T̂ |9t 〉, whereT̂ is a linear
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and, in general, non-Hermitian operator that for two-state systems with local interactions
can be written as a quantum spin Hamiltonian. The average values of quantities like the
Ising spins can also be conveniently represented in this language as〈σj (t)〉 = 〈s|σ̂ zj |9t 〉,
whereσ̂ zj is the Pauli spin matrix at sitej and 〈s| =∑n〈n|. Substituting the state vectors
and the operators by their definitions and using the orthonormality relations one sees that
one obtains the usual definition of average over configurations. One also can, given the
correspondence with the Schrödinger equation, define an Heisenberg representation of the
operators byÂ(t) = eT̂ t Â e−T̂ t , whereÂ is a generic operator. These operators obey the
equation of motion d̂A/dt = [T̂ , Â(t)]. It should be stressed that this is only a convenient
way to represent the master equation for this system and is not related to the intrinsic
quantum dynamics of the Ising system which is given by the Hamiltonian (4). In fact, the
dynamics is in this case generated by the interaction of the Ising spins with the thermal bath
and cannot be deduced from the form of (4) alone. For the system that we have studied in
the previous section the operatorT̂ has the form

T̂ = 0

2

L∑
l=1

(1− σ̂ xl )
[

1− 1

2
σ̂ zl (γ

+
l σ̂

z
l−1+ γ−l σ̂ zl+1)

]
(7)

as can be seen if we consider the matrix elements〈n′|T̂ |n〉 and 〈n|T̂ |n〉, wheren′ is a
configuration differing fromn by the flip of a single spinσl , say. We obtain

〈n′|T̂ |n〉 = −0
2

[
1− 1

2
σl(γ

+
l−1σl−1+ γ−l+1σl+1)

]
〈n|T̂ |n〉 = 0

2

L∑
l=1

[
1− 1

2
σl(γ

+
l−1σl−1+ γ−l+1σl+1)

]
(8)

whereσl , etc, are the values of the Ising spins in configurationn. The first relation gives
(up to a minus sign) the transition rate between configurationsn and n′. The second
relation gives the total rate of transition out of configurationn. This agrees with the general
definition of the T̂ operator [29]. The form (7) and associated equations of motion are
particularly convenient for they allow the calculation of multiple time spin–spin correlation
functions. In the same way one can represent the master equation for the particle dynamics
in terms of aT̂ operator which is also a quantum spin Hamiltonian. The duality relation
between these two models can be given a precise mathematical meaning by means of a
similarity transformation between the operators of the two models [27]. In particular, the
T̂ operator of the generalized Glauber dynamics maps to theT̂ operator of the particle
system. This later operator can be expressed in terms of free fermions by a Jordan–Wigner
transformation [20] and therefore the system is completely integrable. Many correlations
functions relevant for the study of the particle dynamics and the associate Glauber problem
can hence be obtained.

If one now considers the Heisenberg equation of motion forσ̂ zj (t) and takes the
average value on some arbitrary initial state|9〉 in the way indicated above, one obtains
the differential equation giving the time development of the average space-dependent
magnetization [17]. This equation can be solved by defining the Fourier transformsm+k
andm−k of the magnetization at even and odd sites, respectively, with the wavevectork

equal tok = (2π/L)n with n an integer and such thatk lies in the limits− 1
2π 6 k <

1
2π

(we have chosen the lattice spacing to be one). Notice that the Brillouin zone has been
reduced to half of the size it would have ifJ1 = J2 since the lattice now has a periodicity of
two. This procedure gives us a system of two equations couplingm+k andm−k for everyk.
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The relaxational eigenvalues of this system are

ω±k = 1± [cos2 k tanh2(K1+K2)+ sin2 k tanh2(K1−K2)]
1/2 (9)

whereω±k stands for the lower (acoustical) and upper (optical) branches of this dispersion
relation. The late (critical) dynamics is determined by the lowk modes of the acoustical
branchω−k . The characteristic length associated with the decay of the local magnetization
in the steady state can be found from the value of|k| (=2π/ξ ) making the right-hand side
of (9) vanish. We, therefore, take the analytic continuation of (9) to the complex plane. We
obtain the space decaying mode with infinite lifetime (which decays over a characteristic
lengthξ ). For low temperatures,ξ is given by

ξ ∼ exp(2K2). (10)

Therefore, at lowk and low temperatures one can write the dispersion relation as

ω−k = 20ξ−z(1+ (kξ)2) (11)

with ξ given by (10) and

z = 2+ J1− J2

J2
(12)

a result given in [17]. Now to determine the time evolution of the density of particles
we need to compute the equivalent quantity in the Glauber language. This quantity is the
domain wall local density [10] which is given by12(1−〈σl(t)σl+1(t)〉). We, therefore, need
the equation giving the time evolution of the spin–spin correlation function. Notice that
these correlations do not involve only eigenmodes of (7) orthogonal to the slowly decaying
ones, so their relaxation follows closely the slowest processes in the system. Using the
transfer matrix formulation we can write

d

dt
〈s|σ̂ zl (t)σ̂ zm(t)|9〉 = 〈s|[T̂ , σ̂ zl (t)σ̂ zm(t)]|9〉

where|9〉 is as above a general initial state. SubstitutingT̂ by its expression given in (7)
we obtain the equations

d

dt
〈σl(t)σm(t)〉 = −20〈σl(t)σm(t)〉 + 0

2
[ γ+l 〈σl−1(t)σm(t)〉 + γ−l 〈σl+1(t)σm(t)〉

+γ+m 〈σl(t)σm−1(t)〉 + γ−m 〈σl(t)σm+1(t)〉] (13)

if l 6= m and the boundary condition〈σl(t)σl(t)〉 = 1. Since these equations are linear
this boundary condition may be ignored. It can be later enforced by superposing different
solutions [12]. To solve these equations we introduce Fourier transforms of the quantities
〈σl(t)σm(t)〉 when l andm are even,l is even andm is odd, etc. The two wavevectorsk
andk′ which now appear are defined as above. We obtain a system of four linear equations.
The associated secular equation has four solutions corresponding to having two excitations
in the acoustic branch, one in the acoustic and one in the optical branch (two solutions) and
two excitations in the optical branch. The frequencyωkk′ is given by

ωkk′ = ωk + ωk′ (14)

whereωk andωk′ are given by one of the solutions in (9). If we now take the translational
average of the correlation function〈σl(t)σl+1(t)〉 we see that only the terms for which
k′ = −k remain in the Fourier sum. Hence the decay of density of domain walls (density of
particles) is determined by the acoustical branch ofωk,−k for low k. At low temperatures we
just obtainωk,−k = 2ω−k with ω−k given by (11). The interparticle distance in the steady state
is given by the value ofk that makesωk,−k vanish. This coincides with (10). The relaxation
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time τ is given byτ = ξz/40 (τ−1 = ω0,0). This translates into (2) using the relationships
between rates in the Ising and particle pictures (see table 1) in the low-temperature limit.
So we recover the results obtained in section 2 in a rigorous way. It can also be seen from
(14) that dynamical scaling still holds for this model. This is non-trivial, since as pointed
out above there are two correlation lengths in the problem.

5. Conclusions

We have studied a generalized reaction-diffusion process, and the related model of
generalized Glauber dynamics for a staggered Ising model. We obtained the following
results.

(i) The dynamical exponentz relating the relaxation time to the equilibrium correlation
length is non-universal, depending on the ratios of rates or the ratio between the couplings
of the Ising model.

(ii) We found that dynamical scaling still holds, i.e. the dispersion relation still depends
on a function of a single parameterkξ wherek is the wavevector andξ is the equilibrium
correlation length.

It would be interesting to investigate the exact solution of this problem from the point
of view of the particle dynamics, since one can diagonalize the dynamical operatorT̂ by
using free fermions. Also it would be interesting to study if there is any change in the
dynamical exponentz when one goes away from the free fermion condition. One would
expect, based on the general argument given in section 2, that the relationship ofz to the
basic rates does not change provided thatε′/ε � pA/pB � 1. This means that in the
long-time limit the system has a very low density of particles and therefore one should
expect that the interactions are unimportant. Preliminary simulations seem to confirm this
result [30].
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